Curved nanochannels allow independent tuning of charge and spin currents

To increase the efficiency of microchips, 3D structures are now being investigated. However, spintronic components, which rely on electron spin rather than charge, are always flat. To investigate how to connect these to 3D electronics, physicists have created curved spin transport channels. They discovered that this new geometry makes it possible to independently tune charge and spin currents.

Read more

Scientists finally find superconductivity in place they have been looking for decades

Scientists prove a well-known model of material behavior applies to high-temperature superconductors, giving them a new tool for understanding how these materials conduct electricity with no loss. Simulations suggest we might be able to toggle superconductivity on and off in certain materials by tweaking their chemistry so electrons hop from atom to atom in a particular pattern – as if hopping to the atom diagonally across the street rather than to the one next door.

Read more

Scientists one step closer to a fully functioning quantum computer

Quantum computing has the potential to revolutionize technology, medicine, and science by providing faster and more efficient processors, sensors, and communication devices. But transferring information and correcting errors within a quantum system remains a challenge. Researchers now demonstrate a new method of relaying information by transferring the state of electrons. The research brings scientists one step closer to creating fully functional quantum computers.

Read more

New way to produce curvy electronics

Contact lenses that can monitor your health as well as correct your eyesight aren't science fiction, but an efficient manufacturing method has remained elusive. Until now. Researchers have reported developing a new manufacturing method to produce the lenses, solar cells and other three-dimensional curvy electronics.

Read more

Bottom-up synthesis of crystalline 2D polymers

Scientists have succeeded in synthesizing sheet-like 2D polymers by a bottom-up process for the first time. A novel synthetic reaction route was developed for this purpose. The 2D polymers consist of only a few single atomic layers and, due to their very special properties, are a promising material for use in future electronic components.

Read more

Light work for superconductors

For the first time researchers successfully used laser pulses to excite an iron-based compound into a superconducting state. This means it conducted electricity without resistance. The iron compound is a known superconductor at ultralow temperatures, but this method enables superconduction at higher temperatures. It is hoped this kind of research could greatly improve power efficiency in electrical equipment and electronic devices.

Read more