Quantum paradox experiment may lead to more accurate clocks and sensors

More accurate clocks and sensors may result from a recently proposed experiment, linking an Einstein-devised paradox to quantum mechanics. A physicist said the international collaboration aimed to test Einstein's twin paradox using quantum particles in a 'superposition' state.

Read more

Scientists reveal mechanism of electron charge exchange in molecules

Through a new scanning transmission electron microscopy method, researchers are able to observe electron distribution between atoms and molecules and uncover clues to the origins of ferroelectricity, the capacity of certain crystals to possess spontaneous electric polarization that can be switched by the application of an electric field. The research also revealed the mechanism of charge transfer between two materials.

Read more

That new yarn? Wearable, washable textile devices are possible with MXene-coated yarns

Researchers have figured out how to add more conductivity into functional fabric devices, by coating yarns with a 2-dimensional carbon-based material called MXene, to make conductive threads. The group has developed a dip-coating method, similar to the dyeing process, that can produce a conductive yarn strong enough for use in industrial knitting machines and durable enough to make it through wash cycles without degrading.

Read more

Intelligent, shape-morphing, self-healing material for soft robotics

Advances in the fields of soft robotics, wearable technologies, and human/machine interfaces require a new class of stretchable materials that can change shape adaptively while relying only on portable electronics for power. Researchers have developed such a material that exhibits a unique combination of high electrical and thermal conductivity with actuation capabilities that are unlike any other soft composite.

Read more

Physicists couple key components of quantum technologies

Researchers are engaged in intensive work on the components of quantum technologies – these include circuits processing information using single photons instead of electricity, as well as light sources producing such quanta of light. Coupling these components to produce integrated quantum optical circuits on chips presents a challenge. Researchers have developed an interface that couples light sources for single photons with nanophotonic networks consisting of photonic crystals which can be replicated by using established nanofabrication processes.

Read more

Rare 'Lazarus superconductivity' observed in promising, rediscovered material

A team of researchers has observed a rare phenomenon called re-entrant superconductivity in the material uranium ditelluride. Nicknamed 'Lazarus superconductivity,' the phenomenon occurs when a superconducting state arises, breaks down, then re-emerges in a material due to a change in a specific parameter — in this case, the application of a very strong magnetic field. The discovery furthers the case for uranium ditelluride as a promising material for use in quantum computers.

Read more