Biological material boosts solar cell performance

Next-generation solar cells that mimic photosynthesis with biological material may give new meaning to the term 'green technology.' Adding the protein bacteriorhodopsin (bR) to perovskite solar cells boosted the efficiency of the devices in a series of laboratory tests, according to an international team of researchers.

Read more

Replacing coal with gas or renewables saves billions of gallons of water

The transition from coal to natural gas in the US electricity sector is reducing the industry's water use, research finds. For every megawatt of electricity produced using natural gas instead of coal, the water withdrawn from rivers and groundwater drops by 10,500 gallons, and water consumed for cooling and other plant operations and not returned to the environment drops by 260 gallons. Switching to solar or wind power could boost these savings even more.

Read more

'Artificial leaf' successfully produces clean gas


A widely-used gas that is currently produced from fossil fuels can instead be made by an 'artificial leaf' that uses only sunlight, carbon dioxide and water, and which could eventually be used to develop a sustainable liquid fuel alternative to gasoline.

Read more

Why modified carbon nanotubes can help the reproducibility problem

Scientists have conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells. The newly discovered self-recrystallization ability of perovskite could lead to improvement of low-cost and efficient perovskite solar cells.

Read more

Computer models show clear advantages in new types of wind turbines

Researchers have modeled the fluid dynamics of multi-rotor wind turbines via high-resolution numerical simulations. The simulations demonstrate a clear advantage for a turbine model with four rotors. The researchers found, that the wind turbine wake recovers much faster with multi-rotor turbines, that multi-rotor turbines produce slightly more energy than single-rotor turbines, and that a turbine with four rotors as far apart as possible is the optimal construction.

Read more

Distribution of highly radioactive microparticles in Fukushima revealed

New method allows scientists to create a quantitative map of radioactive cesium-rich microparticle distribution in soils collected around the damaged Fukushima Daiichi Nuclear Power Plant Nuclear Power Plant (FDNPP). This could help inform clean-up efforts in Fuksuhima region.

Read more

Are we underestimating the benefits of investing in renewable energy?

Scientists have estimated the emissions intensity of carbon dioxide and other air pollutants from a major electricity distributor and highlighted key consequences – essential information for policymakers shaping decisions to reduce electricity system emissions.

Read more

Inside the fuel cell: Imaging method promises industrial insight

Hydrogen-containing substances are important for many industries, but scientists have struggled to obtain detailed images to understand the element's behavior. Researchers now demonstrate the quantification of hydrogen for different states of water — i.e., liquid, frozen and supercooled — for applications to eco-friendly fuel cells.

Read more