Researchers watch quantum knots untie

A quantum gas can be tied into knots using magnetic fields. The same researchers who were the first to produce these knots have now studied how the knots behave over time. The surprising result is that the knots untie themselves over a short period of time, before turning into a vortex.

Read more

Always on beat: Ultrashort flashes of light under optical control

Ultrashort laser pulses have enabled scientists and physicians to carry out high-precision material analyses and medical procedures. Physicists have now discovered a new method for adjusting the extremely short time intervals between laser flashes with exceptional speed and precision. The intervals can be increased or decreased as needed, all at the push of a button. Potential applications range from laser spectroscopy to microscopy and materials processing.

Read more

Controlling the charge state of organic molecule quantum dots in a 2D nanoarray

Researchers have fabricated a self-assembled, carbon-based nanofilm where the charge state (ie, electronically neutral or positive) can be controlled at the level of individual molecules. Molecular self-assembly on a metal results in a high-density, 2D, organic quantum-dot array with electric-field-controllable charge state, with the organic molecules used as 'nano-sized building blocks' in fabrication of functional nanomaterials. Achieved densities are an order of magnitude larger than conventional inorganic systems.

Read more

Quantum paradox experiment may lead to more accurate clocks and sensors

More accurate clocks and sensors may result from a recently proposed experiment, linking an Einstein-devised paradox to quantum mechanics. A physicist said the international collaboration aimed to test Einstein's twin paradox using quantum particles in a 'superposition' state.

Read more