Light work for superconductors

For the first time researchers successfully used laser pulses to excite an iron-based compound into a superconducting state. This means it conducted electricity without resistance. The iron compound is a known superconductor at ultralow temperatures, but this method enables superconduction at higher temperatures. It is hoped this kind of research could greatly improve power efficiency in electrical equipment and electronic devices.

Read more

Secure printing with water-based invisible ink

Researchers have developed a rewriteable paper coating that can encrypt secret information with relatively low-tech invisible ink — water. A message printed out by a water-jet printer on a manganese-complex-coated paper is invisible to the naked eye, but the message reveals itself under 254 nm UV light. The paper can be ready for another round of printing after erasing the message by heating it with a blow dryer for 15-30 seconds. The method allows reversible secure printing for at least 30 cycles.

Read more

Missing electrons reveal the true face of a new copper-based catalyst

New research has resulted in a reactive copper-nitrene catalyst that pries apart carbon-hydrogen (C-H) bonds and transforms them into carbon-nitrogen (C-N) bonds, which are a crucial building block for chemical synthesis, especially in pharmaceutical manufacturing.

Read more

Iridium 'loses its identity' when interfaced with nickel

Hey, physicists and materials scientists: You'd better reevaluate your work if you study iridium-based materials — members of the platinum family — when they are ultra-thin. Iridium 'loses its identity' and its electrons act oddly in an ultra-thin film when interfaced with nickel-based layers, which have an unexpectedly strong impact on iridium ions.

Read more

Converting absorbed photons into twice as many excitons

A group of researchers found that when light was exposed to the surface of a tetracene alkanethiol-modified gold nanocluster, which they developed themselves, twice as many excitons could be converted compared to the number of photons absorbed by the tetracene molecules. These findings are expected to contribute to areas such as solar energy conversion, electronics, life sciences, and medical care in the future.

Read more