Lead isotopes a new tool for tracking coal ash

Scientists have developed a forensic tracer that uses lead isotopes to detect and measure coal fly ash in dust, soil and sediments. Tests show the new tracer can distinguish between the isotopic signature of lead derived from coal ash and lead that comes from other major human or natural sources. Exposure to fly ash from dust, soil or sediments has been linked to numerous diseases and health concerns.

Read more

Replacing coal with gas or renewables saves billions of gallons of water

The transition from coal to natural gas in the US electricity sector is reducing the industry's water use, research finds. For every megawatt of electricity produced using natural gas instead of coal, the water withdrawn from rivers and groundwater drops by 10,500 gallons, and water consumed for cooling and other plant operations and not returned to the environment drops by 260 gallons. Switching to solar or wind power could boost these savings even more.

Read more

A star is born: Using lasers to study how star stuff is made

On a typical day at the world's biggest laser you can find scientists casually making star-like conditions using 192 high-powered lasers. Stars in the universe are formed through a process called nucleosynthesis, which fuses lighter atoms to create new heavier atomic nuclei. Natural elements found here on Earth, such as helium and aluminum, were formed through this process inside of a star not unlike our own sun.

Read more

New insights could help tame speedy ions in fusion plasmas

To create a practical fusion energy reactor, researchers need to control particles known as fast ions. These speedy ions, which are electrically charged hydrogen atoms, provide much of the self-heating ability of the reactor as they collide with other ions. But they can also quickly escape the powerful magnetic fields used to confine them and overheat the walls of the containment vessel, causing damage.

Read more

Composite metal foam outperforms aluminum for use in aircraft wings

The leading edges of aircraft wings have to meet a very demanding set of characteristics. New research shows that a combination of steel composite metal foam and epoxy resin has more desirable characteristics for use as a leading-edge material than the aluminum currently in widespread use.

Read more

Ceramic industry should use carbon reducing cold sintering process says new research

A new techno-economic analysis shows that the energy intensive ceramic industry would gain both financial and environmental benefits if it moved to free the cold sintering process from languishing in labs to actual use in manufacturing everything from high tech to domestic ceramics.

Read more

Scientists recalculate the optimum binding energy for heterogeneous catalysis

In a discovery that could lead to the development of novel catalysts that do not rely on expensive rare metals, scientists have shown that the optimal binding energy can deviate from traditional calculations, which are based on equilibrium thermodynamics, at high reaction rates. This means that reconsidering the design of catalysts using the new calculations may be necessary to achieve the best rates.

Read more