How molecular footballs burst in an x-ray laser beam

An international research team has observed in real time how football molecules made of carbon atoms burst in the beam of an X-ray laser. The study shows the temporal course of the bursting process, which takes less than a trillionth of a second, and is important for the analysis of sensitive proteins and other biomolecules, which are also frequently studied using bright X-ray laser flashes.

Read more

Scientists develop DNA microcapsules with built-in ion channels

A Research group reports a way of constructing DNA-based microcapsules that hold great promise for the development of new functional materials and devices. They showed that tiny pores on the surface of these capsules can act as ion channels. Their study will accelerate advances in artificial cell engineering and molecular robotics, as well as nanotechnology itself.

Read more

Drug delivery: Thermo-responsive protein hydrogel

Bio-engineering researchers have created a biocompatible, protein-based hydrogel that could serve as a drug delivery system durable enough to survive in the body for more than two weeks while providing sustained medication release. The research advances an area of biochemistry that is also critical to tissue engineering and regenerative medicine. Protein hydrogels are more biocompatible than synthetic ones and do not require potentially toxic chemical crosslinkers.

Read more

Scientists construct energy production unit for a synthetic cell

Scientists have constructed synthetic vesicles in which ATP, the main energy carrier in living cells, is produced. The vesicles use the ATP to maintain their volume and their ionic strength homeostasis. This metabolic network will eventually be used in the creation of synthetic cells – but it can already be used to study ATP-dependent processes.

Read more