First fully rechargeable carbon dioxide battery with carbon neutrality

Researchers are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

Read more

Engineered protein crystals make cells magnetic

If scientists could give living cells magnetic properties, they could perhaps manipulate cellular activities with external magnetic fields. But previous attempts to magnetize cells by producing iron-containing proteins inside them have resulted in only weak magnetic forces. Now, researchers have engineered genetically encoded protein crystals that can generate magnetic forces many times stronger than those already reported.

Read more

Nanocatalyst makes heavy work of formic acid

Researchers have reported a nanocatalyst that is able to produce hydrogen isotope compounds D2 and HD via the heterogeneous dehydrogenation of formic acid in the presence of heavy water. Amine groups on the catalyst support provided a handle for tuning the selectivity of the reaction through their basicity. It is hoped that the reported process, which is appropriate for large-scale production, can be used to improve the accessibility of deuterated materials worldwide.

Read more

Bird droppings defy expectations

Prevailing wisdom ranks uric acid as the primary ingredient in bird excrement which is comprised mostly of urine. (Birds release both solid and liquid waste at the same time. The white substance is the urine). But according to new research, uric acid can't be the answer. That's because there is no uric acid in excreted bird urine.

Read more

Missing electrons reveal the true face of a new copper-based catalyst

New research has resulted in a reactive copper-nitrene catalyst that pries apart carbon-hydrogen (C-H) bonds and transforms them into carbon-nitrogen (C-N) bonds, which are a crucial building block for chemical synthesis, especially in pharmaceutical manufacturing.

Read more

Converting absorbed photons into twice as many excitons

A group of researchers found that when light was exposed to the surface of a tetracene alkanethiol-modified gold nanocluster, which they developed themselves, twice as many excitons could be converted compared to the number of photons absorbed by the tetracene molecules. These findings are expected to contribute to areas such as solar energy conversion, electronics, life sciences, and medical care in the future.

Read more

Hook-on drugs: New delivery strategy for K-Ras disruption

Scientists have succeeded in designing a compound to hook onto the pocket of the enzyme FTase and GGTase I, thereby inhibiting K-Ras. Scientists have worked to concoct an effective drug to target K-Ras proteins which cause cancer when they mutate. It is difficult to infiltrate K-Ras due to a lack of interactive pockets, so a strategy was devised to attack the necessary enzyme in the lipid modification of K-Ras.

Read more