Faster than ever — neutron tomography detects water uptake by roots

New high-speed neutron tomography generates a complete 3D image every 1.5 seconds and is thus seven times faster than before. The method facilitates a better understanding of water and nutrient uptake of crop plants. The method can also be applied to investigate transport processes in various porous material systems.

Read more

Secure printing with water-based invisible ink

Researchers have developed a rewriteable paper coating that can encrypt secret information with relatively low-tech invisible ink — water. A message printed out by a water-jet printer on a manganese-complex-coated paper is invisible to the naked eye, but the message reveals itself under 254 nm UV light. The paper can be ready for another round of printing after erasing the message by heating it with a blow dryer for 15-30 seconds. The method allows reversible secure printing for at least 30 cycles.

Read more

Plastic teabags release microscopic particles into tea

Many people are trying to reduce their plastic use, but some tea manufacturers are moving in the opposite direction: replacing traditional paper teabags with plastic ones. Now, researchers have discovered that a soothing cup of the brewed beverage may come with a dose of micro- and nano-sized plastics shed from the bags. Possible health effects of ingesting these particles are currently unknown, the researchers say.

Read more

Engineered protein crystals make cells magnetic

If scientists could give living cells magnetic properties, they could perhaps manipulate cellular activities with external magnetic fields. But previous attempts to magnetize cells by producing iron-containing proteins inside them have resulted in only weak magnetic forces. Now, researchers have engineered genetically encoded protein crystals that can generate magnetic forces many times stronger than those already reported.

Read more

Hook-on drugs: New delivery strategy for K-Ras disruption

Scientists have succeeded in designing a compound to hook onto the pocket of the enzyme FTase and GGTase I, thereby inhibiting K-Ras. Scientists have worked to concoct an effective drug to target K-Ras proteins which cause cancer when they mutate. It is difficult to infiltrate K-Ras due to a lack of interactive pockets, so a strategy was devised to attack the necessary enzyme in the lipid modification of K-Ras.

Read more

Thinner shells for delivering gentler therapeutic bursts

Releasing drugs that are packaged into microcapsules requires a significant amount of force, and the resulting burst can cause damage to human tissues or cause blood clots. A new technique creates lopsided microcapsule 'shells' that can burst and release their cargo at much lower pressure, making them safer for use in the body.

Read more