New insights into the structure and function of Cdc34, a target for cancer therapeutics

Researchers report they have obtained 3D structural snapshots of Cdc34 in action. Cdc34 is an enzyme important for cell cycle regulation and a target for therapeutic intervention in cancer. These structures, along with studies in human cells, have revealed key features of this enzyme important for its regulation of cell growth and activity. These unique features could present opportunities for rational design of novel cancer therapeutics.

Read more

New marker for tumor aggression in neurofibromatosis type 1

A new study of tumor samples from people with the rare genetic syndrome neurofibromatosis type 1 (NF1) has uncovered novel molecular clues about which tumors are most likely to be aggressive in those with NF1. According to the researchers, the clues could advance the search for more customized and relevant treatments that spare patients exposure to treatments unlikely to work.

Read more

Drug-light combo could offer control over CAR T-cell therapy

Bioengineers are a step closer to making CAR T-cell therapy safer, more precise and easy to control. They developed a system that allows them to select where and when CAR T cells get turned on so that they destroy cancer cells without harming normal cells. The system requires two 'keys' — the drug Tamoxifen and blue light — to activate CAR T cells to bind to their targets.

Read more

Inactive receptor renders cancer immunotherapies ineffective

The aim of immunotherapies is to enable the immune system once again to fight cancer on its own. Drugs known as checkpoint inhibitors are already in clinical use for this purpose. However, they are only effective in about one third of patients. Based on analysis of human tissue samples, a team has now discovered one reason why this is so: an inactive receptor in cancer cells prevents the drugs from reactivating the immune system.

Read more