Physicists score double hit in LED research

In 2 breakthroughs in the realm of photonics, researchers are reporting the successful demonstration of an LED (light-emitting diode) based on half-light half-matter quasiparticles in atomically thin materials. This is also the first successful test of an electrically driven light emitter using atomically thin semiconductors embedded in a light trapping structure (optical cavity).

Read more

High-speed microscope illuminates biology at the speed of life

The team behind the revolutionary 3D SCAPE microscope announces today a new version of this high-speed imaging technology. They used SCAPE 2.0 to reveal previously unseen details of living creatures — from neurons firing inside a wriggling worm to the 3D dynamics of the beating heart of a fish embryo, with far superior resolution and at speeds up to 30 times faster than their original demonstration.

Read more

First fully rechargeable carbon dioxide battery with carbon neutrality

Researchers are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

Read more

Secure printing with water-based invisible ink

Researchers have developed a rewriteable paper coating that can encrypt secret information with relatively low-tech invisible ink — water. A message printed out by a water-jet printer on a manganese-complex-coated paper is invisible to the naked eye, but the message reveals itself under 254 nm UV light. The paper can be ready for another round of printing after erasing the message by heating it with a blow dryer for 15-30 seconds. The method allows reversible secure printing for at least 30 cycles.

Read more

Converting absorbed photons into twice as many excitons

A group of researchers found that when light was exposed to the surface of a tetracene alkanethiol-modified gold nanocluster, which they developed themselves, twice as many excitons could be converted compared to the number of photons absorbed by the tetracene molecules. These findings are expected to contribute to areas such as solar energy conversion, electronics, life sciences, and medical care in the future.

Read more