Flexible, wearable supercapacitors based on porous nanocarbon nanocomposites

Evening gowns with interwoven LEDs may look extravagant, but the light sources need a constant power supply from devices that are as well wearable, durable, and lightweight. Chinese scientists have manufactured fibrous electrodes for wearable devices that are flexible and excel by their high energy density. A microfluidic technology was key for the preparation of the electrode material was a microfluidic technology, as shown in the journal Angewandte Chemie.

Read more

Calcium batteries: New electrolytes, enhanced properties

Calcium-based batteries promise to reach a high energy density at low manufacturing costs. This lab-scale technology has the potential for replacing lithium-ion technology in future energy storage systems. Using the electrolytes available, however, it has been impossible so far to charge calcium batteries at room temperature. Researchers of Karlsruhe Institute of Technology (KIT ) now present a promising electrolyte class, with which this will be possible.

Read more

Inside the fuel cell: Imaging method promises industrial insight

Hydrogen-containing substances are important for many industries, but scientists have struggled to obtain detailed images to understand the element's behavior. Researchers now demonstrate the quantification of hydrogen for different states of water — i.e., liquid, frozen and supercooled — for applications to eco-friendly fuel cells.

Read more

Scientists pinpoint cause of harmful dendrites and whiskers in lithium batteries

Scientists have uncovered a root cause of the growth of needle-like structures — known as dendrites and whiskers — that plague lithium batteries, sometimes causing a short circuit, failure, or even a fire. Such defects are a major factor holding back the batteries from even more widespread use and further improvement.

Read more

Cheaper catalyst can generate hydrogen in a commercial device

Researchers have shown for the first time that a cheap catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial electrolyzer — a step toward clean, large-scale hydrogen production for fuel, fertilizer and industry.

Read more