Printed electronics open way for electrified tattoos and personalized biosensors

Electrical engineers have devised a fully print-in-place technique for printable electronics that is gentle enough to work on delicate surfaces ranging from paper to human skin. This can be accomplished without additional steps to bake, wash or powder-coat materials. The advance could enable technologies such as high-adhesion, embedded electronic tattoos and bandages with patient-specific biosensors.

Read more

Tunable optical chip paves way for new quantum devices

Researchers have created a silicon carbide (SiC) photonic integrated chip that can be thermally tuned by applying an electric signal. The approach could one day be used to create a large range of reconfigurable devices such as phase-shifters and tunable optical couplers needed for networking applications and quantum information processing.

Read more

Structural color printing of 3D microscale objects by shrinking photonic crystals

Researchers have developed a 'coloring-by-shrinking' method to print arbitrary 3D microscopic objects exhibiting structural colors. The design consisted of woodpile photonic crystals with varying lattice constants as the 3D building blocks. These structures remain colorless until they are heat treated, causing them to shrink and manifest color, a result of their lattice constants shrinking down below the wavelength of visible light. The team printed a colorful microscopic Eiffel Tower with structural colors, demonstrating feature sizes smaller than 100 nm.

Read more

Curved nanochannels allow independent tuning of charge and spin currents

To increase the efficiency of microchips, 3D structures are now being investigated. However, spintronic components, which rely on electron spin rather than charge, are always flat. To investigate how to connect these to 3D electronics, physicists have created curved spin transport channels. They discovered that this new geometry makes it possible to independently tune charge and spin currents.

Read more