Scientists one step closer to a fully functioning quantum computer

Quantum computing has the potential to revolutionize technology, medicine, and science by providing faster and more efficient processors, sensors, and communication devices. But transferring information and correcting errors within a quantum system remains a challenge. Researchers now demonstrate a new method of relaying information by transferring the state of electrons. The research brings scientists one step closer to creating fully functional quantum computers.

Read more

First systematic review and meta-analysis suggests artificial intelligence may be as effective as health professionals at diagnosing disease

Artificial intelligence (AI) appears to detect diseases from medical imaging with similar levels of accuracy as health-care professionals, according to the first systematic review and meta-analysis, synthesizing the available evidence from the scientific literature.

Read more

Using light to speed up computation

Researchers have developed a type of processor called PAXEL, a device that can potentially bypass Moore's Law and increase the speed and efficiency of computing. Researchers looked at using light for the data transport step in integrated circuits, since photons are not subject to Moore's Law. Instead of integrated electronic circuits, much new development now involves photonic integrated circuits. The PAXEL accelerator takes this approach and uses power-efficient nanophotonics.

Read more

Up-close and personal with neuronal networks

Researchers have developed an electronic chip that can perform high-sensitivity intracellular recording from thousands of connected neurons simultaneously. This breakthrough allowed them to map synaptic connectivity at an unprecedented level, identifying hundreds of synaptic connections.

Read more

Researchers create first three-photon color-entangled W state

Researchers have constructed a quantum-mechanical state in which the colors of three photons are entangled with each other. The state is a special combination, called a W state, that retains some entanglement even if one of the three photons is lost, which makes it useful for quantum communication. Such entangled states also enable novel quantum applications and tests of fundamental physics.

Read more

'Valley states' in this 2D material could potentially be used for quantum computing

New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing. Scientists report that they can manipulate the electronic properties of this super-thin material in ways that could be useful for encoding quantum data.

Read more