Computer models show clear advantages in new types of wind turbines

Researchers have modeled the fluid dynamics of multi-rotor wind turbines via high-resolution numerical simulations. The simulations demonstrate a clear advantage for a turbine model with four rotors. The researchers found, that the wind turbine wake recovers much faster with multi-rotor turbines, that multi-rotor turbines produce slightly more energy than single-rotor turbines, and that a turbine with four rotors as far apart as possible is the optimal construction.

Read more

Experiment measures velocity in 3D

Many of today's scientific processes are simulated using computer-driven mathematical models. But for a model to accurately predict how air flow behaves at high speeds, for example, scientists need supplemental real life data. Providing validation data, using up-to-date methods, was a key motivating factor for a recent experimental study.

Read more

Hydrologic simulation models that inform policy decisions are difficult to interpret

Hydrologic models that simulate and predict water flow are used to estimate how natural systems respond to different scenarios such as changes in climate, land use, and soil management. The output from these models can inform policy and regulatory decisions regarding water and land management practices. Numerical models have become increasingly easy to employ with advances in computer technology and software with graphical user interface (GUI). While these technologies make the models more accessible, problems can arise if they are used by inexperienced modelers.

Read more

Algorithm personalizes which cancer mutations are best targets for immunotherapy

As tumor cells multiply, they often spawn tens of thousands of genetic mutations. Figuring out which ones are the most promising to target with immunotherapy is like finding a few needles in a haystack. Now a new model hand-picks those needles so they can be leveraged in more effective, customized cancer vaccines.

Read more

Virtual review of cancer clinical trial treatment options quicker than conventional method

Using virtual, cloud-based, interconnected computing techniques applied to 51,000 variables, researchers reduced the time needed to assess a cancer patient's tumor profile and suitability for clinical trials from 14 to 4 days. This method also increased two-fold, over a four-year period, the number of cases that could be assessed compared to conventional methods.

Read more