Cracking how tardigrades survive the extremes

Scientists have gained a new understanding of how tiny, ultra-resilient invertebrates known as tardigrades, or 'water bears,' are protected in extreme conditions. Tardigrades are found in water environments around the world — including mountainous, deep sea and Antarctic environments. The researchers discovered that a tardigrade protein named Dsup binds to chromatin — DNA inside cells — and forms a protective cloud against extreme survival threats such as radiation damage.

Read more

Potent antibody curbs Nipah and Hendra virus attack

A monoclonal antibody has been shown to impede the fusion machinery henipaviruses use to merge with the membrane of cells they are attempting to breach. The antibody halts the attack by blocking membrane fusion and the injection of the viral genome into the host cell. Researchers hope this discovery will pave the way toward preventing or treating Nipah or Hendra virus infections, which now have no vaccines or therapies for people. The main carriers are large bats called flying foxes.

Read more

Unravelling an alternative mechanism of airway mucosal immunity

Researchers have identified two key proteins, ASC and NLRP3, in the maintenance of the innate immune homeostasis in the airway. These proteins do so by a caspase-1-independent mechanism, suggesting that there may be multiple mechanisms involved in protection against microbial infections.

Read more

Cell-based therapies for arthritis and osteoporosis

A new report highlights the latest advances in cell-based therapies for the treatment of disorders of the musculoskeletal system, such as arthritis and osteoporosis, and it identifies key unanswered questions that should be addressed through ongoing research.

Read more