Pathway found for treatment-resistant lung cancer

A big way chemotherapy works is by prompting cancer cells to commit suicide, and scientists have found a pathway the most common lung cancer walks to avoid death. Scientists have found a first step appears to be lung cancer cells expressing high levels of the molecule TIMP-1, classically considered a tumor inhibitor but at high levels already associated with a poor prognosis for patients.

Read more

Discovery of novel cancer signaling mechanism and design of new anticancer compound

Active mutations of a certain signaling receptor protein called KIT tyrosine kinase are found in several cancers, such as acute myeloid leukemia (AML). However, the different locations in the AML cells where KIT induces cancer-specific signaling remain unclear. Now, a group of scientists has aimed to answer this question by using a newly synthesized compound (along with other existing ones) that targets intracellular transport, which may offer an attractive strategy to combat cancer.

Read more

Compound extends survival in mice with certain pediatric brain tumors

Versions of an antibiotic drug called DON first isolated from soil bacteria more than 60 years ago have shown promising signs of extending survival in mice models of especially lethal pediatric brain tumors marked by the high expression of a cancer-causing gene known as the MYC oncogene.

Read more

New mechanism for dysfunctional insulin release identified

Researchers have identified a previously unknown mechanism that regulates release of insulin, a hormone that lowers blood glucose levels, from the beta cells of the pancreas. This mechanism is disrupted in type 2 diabetes. The scientists hope this finding will be used to develop new treatments against the disease.

Read more