New fluorescence method reveals signatures of individual microbes

Researchers have developed a new method that reveals the unique fluorescence patterns produced by individual cells in mixtures of bacteria, yeast and fungi. They combined confocal microscopy with micro-spectroscopy to determine the fluorescence signatures from different types of microbes. They trained machine learning systems to analyze the images and identify different individual cells and cell-types automatically, even those with very similar shapes and sizes.

Read more

New method to purify cell types to high purity

Current biology research relies on the ability to purify cell types using antibodies or transgenic constructs. However, antibody availability is often limited, and genetic manipulation is labor intensive or sometimes impossible. To date, no universal method exists to enrich for cell types without a priori knowledge of cell type markers. Here, we propose GateID, a computational method that combines single-cell transcriptomics with FACS index sorting to purify cell types using only native cellular properties.

Read more

Using high energy density material in electrode design enhances lithium sulfur batteries

To develop higher capacity batteries, researchers have looked to lithium sulfur batteries because of sulfur's high theoretical capacity and energy density. But there are still several problems to solve before they can be put into practical applications. The biggest is the shuttling effect that occurs during cycling. To solve this problem and improve lithium sulfur battery performance, the researchers created a sandwich-structured electrode using a novel material that traps polysulfides and increases the reaction kinetics.

Read more

A new concept could make more environmentally friendly batteries possible

A new concept for an aluminium battery has twice the energy density as previous versions, is made of abundant materials, and could lead to reduced production costs and environmental impact. The idea has potential for large scale applications, including storage of solar and wind energy.

Read more

First fully rechargeable carbon dioxide battery with carbon neutrality

Researchers are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

Read more

Faster than ever — neutron tomography detects water uptake by roots

New high-speed neutron tomography generates a complete 3D image every 1.5 seconds and is thus seven times faster than before. The method facilitates a better understanding of water and nutrient uptake of crop plants. The method can also be applied to investigate transport processes in various porous material systems.

Read more