Bioprinting: Living cells in a 3D printer

A high-resolution bioprinting process has been developed: Cells can now be embedded in a 3D matrix printed with micrometer precision — at a printing speed of one meter per second, orders of magnitude faster than previously possible. Tissue growth and the behavior of cells can be controlled and investigated particularly well by embedding the cells in a delicate 3D framework. This is achieved using so called 'bioprinting' techniques.

Read more

Breaking the stroma barrier: Study shows a new way to hit cancer with radiation

Chemotherapy and radiation therapy are commonly used to treat cancer, but are not always effective and can have toxic side effects. Researchers tested a new radiotherapy technique that sends alpha-emitting particles to stroma cells in pancreatic tumors. The method slowed tumor growth in mice with minimal side effects, pointing to a new potential treatment option in the future for patients with pancreatic cancer.

Read more

'Instant liver, just add water'? Not quite, but a better way to grow multiple organs

Pluripotent stem cells can be used to make experimental models of organ systems, but current techniques often produce models that bear limited resemblance to true organs. Researchers developed an improved method to make a sophisticated three-dimensional organoid model of the liver, pancreas, and bile ducts. The model may help researchers understand how these organs form and how genetic mutations can lead to diseases in these organs.

Read more