Plant physiology will be major contributor to future river flooding

Researchers describe the emerging role of ecophysiology in riparian flooding. As an adaptation to an overabundance of carbon dioxide in the atmosphere, trees, plants and grasses constrict their stomatal pores to regulate the amount of the gas they consume, a mechanism that limits the release of water from leaves through evaporation. This saturates soils and causes more efficient run off and river flooding.

Read more

A tiny cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology.

Read more

Model system for distribution of more accurate time signals

Physicists have demonstrated the first next-generation 'time scale' — a system that incorporates data from multiple atomic clocks to produce a single highly accurate timekeeping signal for distribution. The new time scale outperforms the best existing hubs for disseminating official time worldwide and offers the possibility of providing more accurate time to millions of customers such as financial markets and computer and phone networks.

Read more

New CRISPR genome editing system offers a wide range of versatility in human cells

A team has developed a new CRISPR genome-editing approach by combining two of the most important proteins in molecular biology — CRISPR-Cas9 and a reverse transcriptase — into a single machine.

Read more

Composite metal foam outperforms aluminum for use in aircraft wings

The leading edges of aircraft wings have to meet a very demanding set of characteristics. New research shows that a combination of steel composite metal foam and epoxy resin has more desirable characteristics for use as a leading-edge material than the aluminum currently in widespread use.

Read more