Embryonic development: Earlier origin of neural crest cells

Neural crest cells have been thought to originate in the ectoderm, the outermost of the three germ layers formed in the earliest stages of embryonic development. But their capacity to form derivatives like bone and tooth-forming cells defies fundamental concepts in developmental and stem cell biology. A research team has found a solution to this mystery by demonstrating an earlier origin of the neural crest in chick embryos.

Read more

New portable DNA sequencer quickly and accurately diagnoses wheat viruses

A group of scientists have developed a new technology that makes it possible to rapidly identify viruses in wheat fields with a significantly higher accuracy. They collected four wheat samples from western Kansas and used a new harmonica-sized DNA sequencer and a computer program to quickly detect three different viruses in the samples. Furthermore, their results suggested that the samples contained a new virus strain.

Read more

Scientists enhance color and texture of cultured meat

Researchers are exploring the development of cultured meat found that the addition of the iron-carrying protein myoglobin improves the growth, texture and color of bovine muscle grown from cells in culture. This development is a step toward the ultimate goal of growing meat from livestock animal cells for human consumption.

Read more

Machine-learning analysis of X-ray data picks out key catalytic properties

Scientists seeking to design new catalysts to convert carbon dioxide (CO2) to methane have used a novel artificial intelligence (AI) approach to identify key catalytic properties. By using this method to track the size, structure, and chemistry of catalytic particles under real reaction conditions, the scientists can identify which properties correspond to the best catalytic performance, and then use that information to guide the design of more efficient catalysts.

Read more

Protein in blood protects against neuronal damage after brain hemorrhage

Patients who survive a cerebral hemorrhage may suffer delayed severe brain damage caused by free hemoglobin, which comes from red blood cells and damages neurons. Researchers have now discovered a protective protein in the body called haptoglobin, which prevents this effect.

Read more